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ABSTRACT

This study examines the role of the air–sea coupled process in the seasonal predictability of Asia–Pacific

summer monsoon rainfall by comparing seasonal predictions from two carefully designed model experiments:

tier 1 (fully coupledmodel) and tier 2 (AGCMwith prescribed SSTs). In these experiments, an identicalAGCM

is used in both tier 1 and tier 2 predictions; the daily mean SSTs from tier 1 coupled predictions are prescribed as

a boundary condition in tier 2 predictions. Both predictions start inApril from 1982 to 2009, with four ensemble

members for each case. The model used is the Climate Forecast System, version 2 (CFSv2), the current op-

erational climate prediction model for seasonal-to-interannual prediction at the National Centers for Envi-

ronmental Prediction (NCEP). Comparisons indicate that tier 2 predictions produce not only higher rainfall

biases but also unrealistically high rainfall variations in the tropical western North Pacific (TWNP) and some

coastal regions as well.While the prediction skill in terms of anomaly correlations does not present a significant

difference between the two types of predictions, the root-mean-square errors (RMSEs) are clearly larger over

the above-mentioned regions in the tier 2 prediction. The reduced RMSE skills in the tier 2 predictions are due

to the lack of a coupling process in AGCM-alone simulations, which, particularly, results in an unrealistic SST–

rainfall relationship over the TWNP region. It is suggested that for a prediction of summer monsoon rainfall

over the Asia–Pacific region, it is necessary to use a coupled atmosphere–ocean (tier 1) prediction system.

1. Introduction

The Asia–Pacific summer monsoon affects more than

60% of the world’s population. Monsoon rainfall is a

critical factor for food production and human welfare

(Parthasarathy et al. 1988). An accurate and reliable

monsoon rainfall could be of immense value for local

water management and agricultural planning. In a previ-

ous study, Charney and Shukla (1981) provided a scien-

tific basis for monsoon prediction beyond the 2-week

limit of deterministic predictability that showed that the

lower-boundary conditions (e.g., SST) could influence

seasonal mean monsoon circulation and rainfall. This

concept also provided scientific basis for the predictability

of seasonal mean climate anomalies globally. Based on

this idea, a substantial amount of research has been

conducted to examine the predictability of seasonal mean

atmospheric anomalies [see review papers by Palmer

and Anderson (1994) and Kang and Shukla (2005)]. It

has been particularly successful in identifying the global

teleconnections induced by the El Ni~no–Southern

Oscillation (ENSO) cycle (Ropelewski and Halpert 1987;

Shukla 1998; Straus et al. 2003).

In real-time forecasts, the boundary conditions, such

as SST, should be predicted. Over the years, dynamical

seasonal predictions have been conducted by adopting

the so-called tier 2 approach (Bengtsson et al. 1993). In

this approach, the future state of global SSTs was first

predicted either by some simplified dynamical models,

coupled ocean–atmosphere general circulation models

(CGCMs) with relatively low resolutions, or statistical

methods. The predicted SSTs (or SST anomalies) are
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then specified as the boundary condition for AGCM

integrations. The main advantages of such a ‘‘tier 2’’

system, compared with a high-resolution CGCM, are

avoiding the large systematic errors of fully coupled

high-resolution models and computational efficiency.

With the development of improved coupled models and

the availability of modern supercomputer resources,

tier 1 prediction systems are being used in several op-

erational centers (Palmer et al. 2004; Saha et al. 2006).

However, the tier 2 system is still being used for oper-

ational forecasting at several centers (Barnston et al.

2010), and as a tool for climate downscaling.

A major assumption of the tier 2 system is that, given

the large heat capacity of the ocean, its response to the

atmospheric forcing is much smaller and slower. In the

uncoupled AGCM runs, the ocean heat capacity is as-

sumed to be infinitely large and the prescribed SST does

not respond to the AGCM change at all. This assump-

tion is quite valid in areas where SST fluctuations are

largely determined by the oceanic dynamics, such as the

eastern tropical Pacific Ocean. However, it may be prob-

lematic in areas where the local air–sea feedback has a

strong effect on SST, such as the ‘‘warm seas’’ in the

western Pacific and Indian Oceans. In these regions, SST

fluctuations are affected by the atmospheric fluctuations,

which in turnmodify the atmospheric systems (Wang et al.

2005; Wu and Kirtman 2005). This kind of feedback can

be important to produce relatively long-living and poten-

tially predictable signals in the ocean–atmosphere system.

In such situations, it is conceivable that a prescribed SST

anomaly, without responding to any feedback, is likely to

exaggerate its influence on the atmosphere. In fact, studies

have demonstrated the vital role of air–sea interaction in

the monsoon regions (Fu et al. 2002; Wu and Kirtman

2004, 2005, 2007;Wu et al. 2006;Wang et al. 2005; Cherchi

and Navarra 2007; Chen et al. 2012; Hendon et al. 2012;

Hu et al. 2012). For example, Wu and Kirtman (2004)

showed the critical role of Indian Ocean coupling in

maintaining the relationship between the Indian summer

monsoon and ENSO. Wang et al. (2005) identified fun-

damental discrepancies between SST-forced AGCM

simulations and observations. In AGCMs, positive SST–

rainfall correlations are found during the summer season,

especially over the western Pacific region, which is oppo-

site of the observations. They have argued that a coupled

ocean–atmosphere model is required for the simulation

and prediction of precipitation over the Asia–Pacific

monsoon region. Generally, these studies pointed out

the deficiencies of the tier 2 system about the lack of

coupling feedback.

However, few studies have compared the tier 1 and

tier 2 systems in a prediction mode. Kug et al. (2008)

conducted a comparison study in which two different

AGCMs (at least in their resolutions) and different

anomalous SSTs were used, which makes the comparison

problematic. Kumar et al. (2008) made a similar com-

parison by using the sameAGCMand SST anomalies but

with different SST climatology, and found that much of

the difference was related to the different SST climatol-

ogy. In fact, most of sensitivity experiments mentioned in

the above paragraph also failed in using the same SSTs,

and thus the derived conclusions might not be as robust

as expected. Therefore, a strict comparison between the

tier 1 and tier 2 systems will not only have practical values,

but also scientific benefits. In this study, we carry out

a strict comparison by a state-of-the-art coupled forecast

model, the Climate Forecast System, version 2 (CFSv2)—

the current operational climate prediction model for

seasonal-to-interannual prediction at the National Cen-

ters for Environmental Prediction (NCEP). To make our

comparison between the tier 1 and tier 2 predictionsmore

robust, an identical AGCM is used in both tier 1 and

tier 2 predictions, and the daily mean SSTs from the tier 1

prediction are used as a boundary condition in the tier 2

prediction. We will focus on the seasonal prediction of

Asia–Pacific summer monsoon rainfall.

2. Model, datasets, and prediction experiments

The coupled forecast model used in this study is CFSv2

(Saha et al. 2013, manuscript submitted to J. Climate). In

CFSv2, the ocean model is the Geophysical Fluid Dy-

namics Laboratory (GFDL) Modular Ocean Model

(MOM), version 4, which is configured for the global

ocean with a horizontal grid of 0.58 3 0.58 poleward of

308S and 308N and a meridional resolution increasing

gradually to 0.258 between 108S and 108N. The vertical

coordinate is geopotential (z-) with 40 levels (27 of

them in the upper 400m). The maximum depth is ap-

proximately 4.5 km. The atmospheric model is a lower-

resolution version of the Global Forecast System (GFS),

which has a horizontal resolution at T126 (105-km grid

spacing) and 64 vertical levels in a hybrid sigma-pressure

coordinate. The oceanic and atmospheric components

exchange surfacemomentum, heat and freshwater fluxes,

as well as SST, every 30min.

The tier 1 seasonal prediction is carried out using the

coupled model—CFSv2. The ocean initial conditions

(OICs) are based on the ocean states from the European

Centre forMedium-RangeWeather Forecasts (ECMWF)

Ocean Reanalysis System 4 (ORA-S4; Balmaseda et al.

2013). For each OIC, four ensemble members are gener-

ated by changing their atmospheric and land initial con-

ditions, which are the instantaneous fields from 0000 UTC

of the first 4 days in April of each year in the NCEP Cli-

mate Forecast SystemReanalysis (CFSR; Saha et al. 2010).
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The experimental predictions are conducted for six

months—from April to September—for the period 1982–

2009. This experiment is referred to as CGCM prediction.

In a previous study, we compared the impact of CFSR and

ECMWFORA-S4 ocean initial conditions, and found that

using ECMWFORA-S4 ocean initial conditions in CFSv2

produces better predictions of SST, especially in the east-

ern Pacific (Zhu et al. 2012).

For the tier 2 seasonal prediction (referred to as

AGCM prediction), daily SST boundary conditions are

prescribed from the CGCM prediction. A similar strat-

egy was also used byKim et al. (2010) to explore the role

of air–sea coupling onMadden–Julian oscillation (MJO)

predictions, where AGCM was forced with daily SSTs

interpolated from pentad mean CGCM SSTs. In the

AGCM prediction, there are four ensemble members as

well; for each member (say, the second April cases), the

same atmospheric and land initial conditions as inCGCM

are used to initialize the atmospheric component of

CFSv2, which is forced by the daily mean SST from the

corresponding CGCM prediction (i.e., the second April

cases). Thus, on the daily time scale, the SST is identical

between the tier 1 and tier 2 predictions. In the CGCM

there is a higher-frequency coupling process, where air–

sea fluxes exchange every 30min. For both predictions,

four ensemblemembers are averaged before comparison.

Monthly rainfall from the National Oceanic and At-

mospheric Administration’s (NOAA) Climate Prediction

Center Merged Analysis of Precipitation (CMAP) (Xie

and Arkin 1997) is used as a proxy for rainfall observa-

tions, which is on a 2.58 3 2.58 grid.

3. Results

Figure 1 shows the 28-yr mean (1982–2009) climato-

logical monsoon [June–September (JJAS)] rainfall from

observations (Fig. 1a) and model biases relative to the

observations in the two types of predictions (Figs. 1b,c).

The observed mean seasonal precipitation (Fig. 1a) is

generally above 6mmday21 to the east of 608E and north

of 108S over the tropical Indian Ocean, and covers a large

area of the western Pacific and the Asian continent. Cli-

matological precipitation in this area is characterized by an

array of heavy rainfall centers lined up in the northern

latitudinal zone between 108 and 208N, near the western

coast of India; the northeastern part of the Bay of Bengal;

FIG. 1. Climatological JJAS rainfall in (a) CMAP observations, and the climatological biases relative to (a) in

(b) CGCM prediction and (c) AGCM prediction. Contour interval is 2mmday21.
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and both the eastern and western sides of the Philippines,

in the eastern South China Sea and western Pacific. An-

other southern belt of heavy precipitation is between 108S
and the equator, extending from the Sumatra coast and

further westward in the Indian Ocean.

Although the major features of the observed mean pre-

cipitation are captured by both predictions qualitatively

(not shown), there are substantial model biases (Figs. 1b,c).

In the CGCM prediction (Fig. 1b), systematic biases are

dominated by relatively large errors in the coastal re-

gions, such as the wet biases to the west of the Philippines

and west of the Indochina Peninsula and dry biases over

west of the Bay of Bengal and northern India. For the

AGCM prediction (Fig. 1c), the bias pattern is also sim-

ilar over the Indian Ocean and South Asia, with the wet

biases near the eastern Bay of Bengal somewhat en-

larged, while the dry biases are generally weakened. The

most striking difference, however, appears in the tropical

western North Pacific (TWNP; 58–208N, 1108–1608E),
where not only the wet bias to the west of Philippines is

enhanced, in comparison to its coupled counterparts

(Figs. 1b), but much larger wet biases are found over the

ocean to the east of the Philippines in the western Pacific.

This is in contrast to the results reported by Kug et al.

(2008), who did not find significant differences in

precipitation between the coupled and uncoupled sim-

ulations. In their case, however, different AGCMs and

different SSTs were used in the tier 1 and tier 2 experi-

ments, making the comparison problematic.

The differences between the coupled and uncoupled

predictions are more clearly demonstrated by the magni-

tudes and the patterns of interannual standard deviations

of seasonal rainfall anomalies (Fig. 2). The observations

(Fig. 2a) show that large interannual anomalies generally

overlap with the major centers of the mean precipitation,

except for the equatorial western Pacific, where ENSO

causes large interannual rainfall variations. The general

features of observed interannual variability are well cap-

tured by the CGCM (Fig. 2b), except for generally lower

standard deviations for the centers in the Indian Ocean

basin, the eastern Bay of Bengal, and the northwestern

Pacific. In contrast, the AGCM predictions (Fig. 2c) show

large discrepancies. The amplitude of variability is signif-

icantly larger than that from both the observations and the

couple model. It is more than twice in the centers of the

active regions. If the standard deviations were calculated

for each prediction member individually and then aver-

aged, the differences would be even larger (not shown).

This difference implies that coupling plays an important

‘‘damping’’ role in these regions, which suppresses the

FIG. 2. Standard deviation of JJAS rainfall anomalies in (a) CMAP observations, (b) CGCM prediction, and

(c) AGCM prediction. Contour interval is 0.5mmday21.
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atmospheric response to SST. This is particularly true

in the TWNP region.

The patterns of the JJAS precipitation prediction skill

are shown in Fig. 3 in terms of anomaly correlation co-

efficients (ACCs; top panels) and root-mean-square errors

(RMSEs; bottom panels). The ACC maps (Figs. 3a,c)

show that most of the model skill is concentrated in the

equatorial regions in the western Pacific and the Maritime

Continent, which should be related to SST variations in the

eastern tropical Pacific and thus there is no clear difference

between the ACC patterns for the CGCM and AGCM

predictions. Other regions of relatively higher skills in-

clude the northwestern Pacific and near the western coast

of India, both between 108 and 208N. The CGCM pre-

diction also shows somewhat higher skill in the eastern

equatorial Indian Ocean than the AGCM prediction. In

general, however, the ACC difference is insignificant be-

tween the two predictions in these areas.

The RMSEmaps (Figs. 3b,d) show large errors for the

AGCM compared to the CGCM predictions. The RMSE

patterns from the two predictions are similar to their re-

spective interannual variation patterns (e.g., Figs. 2b,c).

The AGCM prediction errors (Fig. 3d) are above

3mmday21 over a large region stretching from the west

coast of India to the western Pacific. These errors are

substantially larger than those in the CGCM prediction

(Fig. 3c). For instance, the difference between theCGCM

and AGCM predictions were much larger for the 1997

El Ni~no year (Fig. 4), for which severe droughts were

predicted over India by the AGCM prediction, but they

were not seen in observations and were weaker in the

CGCM predictions.

Figure 5 shows pattern correlations and RMSEs for

JJAS precipitation over the domain (308S–308N, 308–
1608E) during 1982–2009. Correlations are comparable

in both predictions, with themean correlation being 0.22

and 0.19 for the CGCM and AGCM predictions, re-

spectively. In contrast, RMSEs are generally always

higher for the AGCM compared to the CGCM.

4. Discussion

During the past 30 years, a large number of AGCM

experiments have been carried out with prescribed SST

(Gates et al. 1999; and many others). These numerical

experiments were helpful in establishing the role of

FIG. 3. Prediction skill of JJAS rainfall for (a),(b) CGCM prediction and (c),(d) AGCM prediction for (top)

anomaly correlation coefficients and (bottom) RMSE. Contour interval is (a),(c) 0.1 and (b),(d) 0.5mmday21. In

(a) and (c), ACCs larger than 0.32 (black contour) are significant at the 95% confidence level, according to the

one-tailed Student’s t test (DOF 5 26).
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slowly varying boundary conditions of SST in forcing

the atmospheric circulations and rainfall. AGCMs were

so successful in simulating the observed atmospheric

tropical circulation in response to observed large SST

anomalies in the tropical Pacific associated with ENSO,

which helped establish a scientific basis for dynamical

seasonal predictions (Shukla 1998; Kang and Shukla

2005). Nevertheless, it was noted (Wu and Kirtman

2004; Wang et al. 2005) that the regional atmospheric

circulation and rainfall over the Indian Ocean and es-

pecially over the western Pacific region, in response to

the prescribed observed SST, were quite unrealistic in

the summer season. The present study was designed to

address this issue systematically. Both coupled model

forecasts and, AGCM forecasts are compared with ob-

servations, and AGCM forecasts forced by SSTs from

the coupled model forecasts.

Wang et al. (2005) had shown (and confirmed by our

study as in Fig. 6) that the correlation between SST and

rainfall over the tropical westernNorth Pacific region was

negative in observations and coupledmodels, but positive

in AGCM simulations. In AGCM simulations, where

SST is unable to respond to atmospheric fluctuations,

there is no control (damping) on fluxes at the ocean–

atmosphere interface. If the convection parameteriza-

tion in the model is such that it produces convective

rainfall in response to warmer SST anomalies, then the

model will produce a positive correlation between SST

and rainfall. However, in reality, warm SST may not

produce convection because of two reasons: 1) the region

of warm SST may be under the influence of large-scale

descending motion caused by convection elsewhere and

2) the local warm (cold) SST anomaly might have been

produced by absence (presence) of cloudiness and weak

(strong) winds (in other words, the local warm SST is

a result of atmospheric forcing). For the Indian Ocean

and the western Pacific region, both processes seem to

be important. TWNP is clearly an example of a region

where SST changes are mainly driven by cloudiness and

wind anomalies in the overlying atmosphere. The cloud-

iness affects the shortwave radiation reaching the ocean

surface, and wind anomalies affect evaporation from

the ocean. Both processes are also noticed by Wu and

Kirtman (2005).

The lack of damping of fluxes in our uncoupled

AGCM integrations is clearly seen in unrealistically

FIG. 4. Distribution of JJAS rainfall anomalies in 1997 from (a) observations (CMAP), (b) CGCM prediction, and

(c) AGCM prediction. Contour interval is 1mmday21.
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large values of standard deviation of precipitation (Fig. 2).

This is even more evident when we investigate the

time series of regional mean precipitation (not shown),

where both floods and droughts were far more severe

in the AGCM integration compared to the coupled in-

tegrations. These results suggest that a hybrid approach,

where SST is prescribed over those regions where the

atmosphere is strongly forced by the underlying SST and

a coupled ormixed-layermodel with high (;1m) vertical

resolution in the upper ocean is used in those regions

where SST is forced by the overlying atmosphere, may

provide better skill in seasonal prediction of summer

monsoon rainfall. The high vertical resolutionwill be able

to resolve the diurnal cycle, which plays an important role

in this region (Woolnough et al. 2007). The hybrid ap-

proach will also benefit some less developed countries

that cannot afford a fully coupled model for seasonal

prediction.

5. Conclusions

In this study, two sets of carefully designed prediction

experiments are conducted to examine the role of air–sea

coupling in the seasonal predictability of Asia–Pacific

summermonsoon rainfall. The predictions are conducted

by both tier 1 and tier 2 forecast systems based on CFSv2,

starting from each April during 1982–2009, with four

ensemble members for each case. The experiments are

designed to ensure that 1) exactly the same AGCM is

used in both tier 1 and tier 2 predictions, and 2) exactly

the same daily mean SSTs are used in the tier 2 pre-

diction that were generated by the tier 1 system. Com-

paring the tier 1 and tier 2 predictions, the following

differences are found:

d In the absence of air–sea coupling, tier 2 predictions

produce higher rainfall biases and unrealistically high

rainfall interannual variations.
d The prediction skill, as measured by anomaly correla-

tion, does not show significant differences between the

two types of predictions, but RMSEs are significantly

larger for the AGCM (tier 2) predictions compared to

the CGCM (tier 1) predictions.

These results suggest that coupled ocean–atmosphere

models are the most promising tools for operational pre-

diction of seasonal mean rainfall over the Asia–Pacific

region. Development of high-fidelity coupled ocean–

atmosphere models and consistent initial conditions

of ocean, land, and atmosphere are required to realize

the potential predictability of seasonal variations. In ad-

dition, this study is based on one system that can repre-

sent air–sea coupling processes relatively well (Fig. 6).

FIG. 5. (a) Anomaly pattern correlation and (b) pattern RMSE (mmday21) of JJAS

rainfall from CGCM prediction (green) and AGCM prediction (red) over the domain

(308S–308N, 308–1608E) during 1982–2009. Numbers in brackets are the mean values av-

eraged over 1982–2009.
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We are urging more similar comparisons based on dif-

ferent systems to confirm our findings.
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